
_

'_ "4 _

,,iv --/6 E3.P

Algorithms vs Architectures

tbr Computational Chemistry

Harry Partridge

Charles W. Bauschlicher, Jr.

January 1986

Research Institute for Advanced Computer Science
NASA Ames Research Center

]
RIACS TR 86.3

[NASA-TM- 89395) ALGORITHMS VBRSSS
ARCHITEC[URES FCR COM_UTATICNAL CHEMISTRY

_NASA) 24 p CSCL 07A

G3123

N86-28992

Unclas

43336

Research Institute for Advanced Computer Science





Algorithms vs Architectures for Computational Chemistry

Harry Partridge

Research Institute for Advanced Computer Science

NASA Ames Research Center

Moffett Field, Ca. 94035

and

Charles W. Bauschlicher, Jr.

NASA Ames Research Center

Moffett Field, Ca. 94035

Introduction

In quantum chemistry we determine the properties of atoms and

molecules from first principles by solving the time independent

Schrodinger equation. The solution algorithm we employ involves

a double basis set expansion of the wavefunction _ using a varia-

tional principle or a perturbation expansion to optimize the param-

eters[l]. The quantum chemistry techniques are capable of provid-

ing accurate atomic and molecular properties such as molecular

geometries[2], dissociation energies[3] and transition probabili-

ties[4]. The calculated properties both complement and supple-

ment the available experimental data. In addition, the results can

provide qualitative insight of chemical phenomenal5].

The algorithms employed are computationally intensive and, as a



result, increased performance (both algorithmic and architectural)
is required to improve accuracy and to treat larger molecular sys-
tems. In this work we examine several benchmark quantum chemis-
try codeson a variety of architectures. While these codesare only
a small portion of a typical quantum chemistry library, they illus-
trate many of the computationally intensive kernels and data mani-
pulation requirements of our applications. Furthermore, under-
standing the performance of the existing algorithms on present and
proposed supercomputers servesas a guide for future program and
algorithm development. The algorithms investigated are: a) a
sparse symmetric matrix vector product, b) a four index integral
transformation and c) the calculation of diatomic two-electron
Slater integrals.

In this work we examine the vectorization strategies for thesealgo-
rithms for both the Cyber 205 and Cray XMP. In addition, we
look at multiprocessor implementations of the algorithms on the
Cray XMP and on the MIT static data flow machine proposed by
Dennis[6].

The Cyber 205 and Cray XMP used in this study are located at
NASA Ames ResearchCenter. The Cyber 205 is an 8M word four
pipe machine and the Cray XMP is a two processor, 2M word
machine with a 16M word SSD (solid state disk). The FTN200
and CFT 1-11 compilers were used for the Cyber 205 and Cray
XMP, respectively. For multiprocessing, the CFT 1-13 compiler
was used.

The architectures of the Cray XMP[7] and Cyber 205[8] are signifi-
cantly different so that vectorization strategies differ. From a pro-
grammer (or algorithm) point of view the major differences are:
Firstly, on the Cyber 205 a vector must have its elements stored
contiguously in memory, while on the Cray, successiveelements of
the vector can be spaced by a constant stride in memory.
Secondly, short-vectors do not perform well on the Cyber 205 in
comparison with either the scalar or asymptotic vector



performance. On the Cray XMP, vector lengths of 2-3 usually
equal scalar performance and the asymptotic rate is approached
very quickly. Thirdly, the Cyber 205 has a rather impressive
hardware gather/scatter feature that allows random elementsto be
gathered together to form a vector. On our Cray this is done as a
software construct. (The new Cray XMP's have hardware
gather/scatter which increasesthe programming options.) Finally,
the Cray can have a solid state disk (SSD) which substantially
reducesthe IO wait time.

The relatively poor short vector performance and the requirement
for contiguous vectors on the Cyber 205 necessitatesconsiderably
more care in the algorithm design than is required for the Cray. In
general, however, if an algorithm emphasizeslong vectors, it will
run well on both machines. To some level then, portability con-
siderations suggest that it is best to consider long vector implemen-
tations (even if the contiguous memory requirement must be
relaxed and gather/scatter used) becausethis will facilitate running
on all vector (and pipelined) machines. There is also evidenceindi-
cating that this will facilitate the use of at least some classesof
parallel processors[9].The major disadvantage of this approach for
the Cray XMP is that it suggests avoiding some matrix formula-

tions of algorithms. Matrix multiplication on the Cray XMP is very

efficient even for fairly small matrices. Similar operations on the

205 are not very efficient unless many matrices can be treated

simultaneously.

The computational model in data flow is significantly different

from the traditional yon Neumann machine[10]. In a data flow

machine each instruction (operation) is represented as a directed

graph having one or two inputs and an output. Data values move

as tokens on the arcs of the graph. An instruction (graph) can exe-

cute (fire), consuming its inputs and producing an output token,

whenever all of its inputs are present. Since the arcs on the graph

represent the data dependencies among the operations, any node

with all its inputs present may be fired, regardless of whether other



graphs around it are firing. The architecture has the advantage
that it can exploit all of the parallelism inherent in the algorithm

and not just that about the program counter,• as in a traditional
von Neumann machine. The parallelism in the algorithm can thus
beexploited regardless of whether or not we have vectors. To facil-
itate the generation of the data flow graphs, data flow languages
have beenproposed. Theseareusually functional languages.

The MIT static data flow machine[6], a specific architecture that
has beenproposed to implement this model, imposestwo additional
constraints. The instruction firing rules include the condition that
there be no token existing on the output edge,and that the graphs
(code) are statically distributed over the available processing ele-
ments at compile time. The characteristics of the model architec-
ture studied[ll,12] are described in Figure 1. The suggested
machine consists of 256 processing elements (PE) interconnected
with a cube-type routing network. Each PE has an instruction
store and 0.512M words of array memory. Each is capable of
between 5 and 8 MFLOPS and each executesthe data flow graphs
allocated to it. If the result token of each graph is not local to that
PE then the routing network is used to transfer the token to other
PE's that need the result. The designsupports both spatial paral-
lelism (concurrent execution in multiple processing elements) and
pipelining (streaming array values from array memory through the
PE and functional units). To utilize the machine effectively, it is

• necessaryto keep the floating point units (FP) on each PE busy. If
all of the tokens are local to the PE then 10 active instructions are
sufficient for the PE to run at the peak FP rate. Referencesto the
array memory and network transfers could require that each PE
need up to 250 FP active instructions for the pipeline to operate at
peak performance. Thus, to obtain near optimum performance on
this architecture, it is necessaryto maximize local memory (graph)
references. The language proposed with this architecture is the
functional language VAL[13]. The VAL compiler is being
developed and is expected to be able to assist significantly in the
transformation. Because the IO system is poorly defined on the



machine at present, we will assumethat all implementations of the
algorithms will fit in core for this architecture.

From an algorithmic point of view, we will consider the machine to
be 256 parallel processors--eachwith a peak performance of 5
MFLOPS--which are connected with a rather sophisticated net-
work. Our goal is to localize memory referencesso that each PE
can be kept busy (the network transfer rate or IO does not become
the rate limiting step). In this way, we can ascertain a rough per-
formance estimate for the data flow machine and also obtain

insight into the performance on other non-shared memory multiple
processors.

SparseMatrix Vector Product

The product of a large randomly sparse symmetric matrix times a
set of vectors occurs in many applications. In computational chem-
istry it occurs in constructing the Fock matrix in Self Consistent
Field (SCF) calculations[14/, in solving linear equations, and in
solving for the lowest few eigenvalues and eigenvectors[15]. The
scalar FORTRAN for this code is given in Figure 2A. We compute

D=HC

where H is a symmetric matrix of order n (n= 10000 to 50000) and

C and D are of dimension (n,NROW) with NROW <<n (typically

NROW = 1 to 5). The matrix is assumed to reside on disk and, to

reduce IO, the row index of each non-zero element is stored in the

low order bits. Initially, the algorithm appears to be essentially

scalar because the number of vectors, NROW, is usually too small

to obtain effective vectorization-especially for long vector

machines-and the matrix is sufficiently sparse (as low as 1%) that

the sparsity cannot be ignored. Using the gather/scatter

features[16/ of the machines, however, one obtains considerable

improvement over scalar performance. The non-zero elements of

each row of H are stored sequentially. We thus gather together ele-

ments of C and D which correspond to the nonzero elements of H,



perform the corresponding vector operation on the compressedC
and D and scatter the modified elementsof the compressedD back
to memory. The code for the Cray is given in Figure 2B; the code
for the 205 is similar. The Cray SPAXPY and SPDOT combine the
gather/scatter operation with the corresponding floating point
operation and avoids a transfer back to memory to form the tem-
porary vector. The timings for the CYBER 205 and CRAY are
given in Table 1 in the column labeled VL. The column labeledVS
lists the timings for vectorizing over NROW. On the Cray XMP,
the VS algorithm is the most efficient algorithm if NROW /> 7. On
the Cyber 205 and on the Cray XMP, when NROW _ 6, the VL
algorithm is the most efficient with the Cyber 205 (Cray) vector
code being 6.0 (2.2) times faster than the corresponding scalar
code. The Cray scalar code is 1.5 times faster than the Cyber 205
scalar code and the vector improvement obtained on the Cray is
not as good as on the Cyber 205 since the Cray gather/scatter
operations are software operations. Ignoring IO overhead, the
Cyber 205 (Cray) performances are 30.8 (and 18.8) MFLOPS in

vector mode and at 4.8 (and 7.6) MFLOPS in scalar mode. (The

unpacking operation is included in the operation count.) The

hardware gather/scatter feature thus yields significant improve-

ment even for codes which appear to be scalar with each operand

used only once.

One other important point is that the CPU overhead for FOR-

TRAN IO can be enormous, particularly on the Cyber 205. This is

shown in Table 1 under the heading Row IO. The IO can increase

the CPU time by a factor of 40! It is important that either large

buffer lengths be used or that BUFFERIN or virtual IO be used.

For multiprocessors, the algorithm for the nonsymmetric case has

been considered in detail by Reed et. al.[17]. The algorithm for

symmetric matrices is complicated slightly by the fact that each

element H.. contributes to both D i and Dj. IO and memory con-ij
cerns still strongly suggest that the symmetric form of H be expli-

citly utilized. One implementation requires each processor to have



accessto all of C with each processor forming a partial result Dp.
Each processorreads a record of H and, for these elements, com-
putes the product HC. When all of the records of H have been pro-
cessedthe product D is calculated as

Dik=y]pDPik

We have implemented this on the multiprocessor Cray XMP with 3

variations. The code for one of these is given in Figure 2C. Firstly,

the file H is split into two separate files and each processor

proceeds independently until the final summation. Secondly, each

processor works independently but reads from the same file (the

system manages locks and unlocks for IO). Finally, one processor

manages the IO and then spawns off tasks. All of these approaches

yield a total time (summing over the CPU's) which are nearly

identical to that for one processor. The efficiency for all 3 methods

is similar and is about 99%. In essence, this means that an SCF

calculation can be speeded up by nearly a factor of 2 on a two CPU

machine by using 1.5 times the memory. (The Fock matrix con-

struction is about 97% of the total SCF time).

On the static data flow machine essentially the same algorithm

could be implemented. A sample code for this machine is given in

Figure 3 where we have coded the VS algorithm (in VAL) assum-

ing a global memory. The algorithm is easily distributed over the

PE's where each PE stores a portion of H in its array memory.

The corresponding partial sum Dp is computed by importing the

needed elements of the vectors C. Depending upon the size and

sparsity of the matrix, each PE will need only part of the elements

of C. For the n=20000, 1% nonzero test case, each PE will require

about 3/4 of the the elements of C. The rate limiting step of this

implementation is therefore the network transfer time to transmit

C and Dp. For the above example the IO time would be about

0.16 seconds while the total CPU time would be only 0.01 sec. The

total execution time is thus 0.17 seconds.

Another implementation has each PE store about re=n/256



elements of C and of D. The matrix is then divided (sorted) into
M*(M+i)/2 subblocks each spanning approximately an equal
number of rows and columns (m)with each subblock allocated to a
PE (M=22 square subblock would allocate one block to 253 of the
PE's). Each PE would then require no more than 2m elements of
C and would calculate no more than 2m elements of Dp. Further-
more, each element of D could be summed requiring no more than
M elements of Dp. Thus, the number of words to be transferred
over the network for each PE is re(M+2). For our sample problem,
m=79 and M=22; the network transfer time is less than 0.01
seconds.

Four Index Transformation

The four index transformation is neededto transform the two elec-

tron integral file (a function of four variables, F(ij,k,1), with
respect to a different basis set.

G(p,q,r,s) = _"_d,j,k,lCp,iCq, i Cr,kCl,sF (ij,k,1)

The algorithm[18] involves the formation of partial sums to reduce

the computational complexity but it requires a significant shuffling

(reordering of the partially transformed integrals) half-way through

the calculation to keep the memory references local. To obtain effi-

cient vectorization it is necessary to treat molecular symmetry

explicitly, which essentially blocks the function F into relatively

dense subunits.

If we define the n i by nj matrices F kl as the corresponding subunits

of F then the first half transform may be expressed as a sequence of

similarity transforms, HkI=cTFkIc. If we shuffle the elements of H
• Ix "ij_'t.3" kl

to form H with _'kl --_ij , then G may be formed as another

sequence of similarity transforms. The algorithm is thus broken

into the following steps:

1) The expand step to form the matrices, F kl. Only the elements

of F greater than some threshold are usually stored on disk.

In addition, for many of the symmetry blocks of F there are



restrictions on the range of the indices since only the unique
integrals are stored.

2) First half transform, denoted as MXM1.

3) Sort or shuffle step to reorder the partially transformed
integrals. Since the integral file doesnot fit into memory, ran-

dom accessis used to perform a bin sort.

4) Secondhalf transform, denotedas MXM2.

The Cray timings for a typical case are given in Table 2. It is
important to note that the scalar steps of the order n2, O(n2),
becomesvery important on a vector machine even though the vec-
tor operations are O(n3). Careful consideration must be given to
these sections even though on a scalar machine the improvement
will be small. The Cray matrix multiplication routines are very
efficient for performing the similarity transforms even for matrices
as small as 4 by 4 (seeTable 3). On the Cyber 205, the vector
lengths for a matrix multiply are too short to provide efficient vec-
torization. Since we have O(n2) similarity transforms to do, how-
ever, we can perform many of these simultaneously thereby obtain-
ing vector lengths of O(n3). The timings for these transformations
are given in Table 4 where NM is the number of transformations
done together. The periodic gather/scatter feature of the 205 is
used to reorder the integrals to obtain contiguous vectors. Even
with the gather/scatter overhead, the half-transformation compu-
tation rate is 300 MFLOPS for this example.

The algorithm transfers trivially to a multiprocessor environment

because each of the O(n 2) similarity transforms can be performed

independently. The reshuffling on the multiprocessor should cause

no difficulty since each processor can perform independent bucket

sorts with only the need to synchronize before starting the second

half transform. On the static data flow machine, we will again

assume the integral file will fit in memory. For the test case in

Table 2 the CPU time will be on the order of 0.12 sec and the shuf-

fle time on the order of 0.01 sec.



Diatomic Slater 2-electron Integrals

The numerical evaluation of O(n4), whe/'e n=100-300, diatomic
exponential (Slater) type orbital two-electron integrals is one of the
most computationally intensive steps in our codes. The algo-
rithm[20] uses the Neumann expansion for rij-1 and each term in
the expansion involves an iterated double numerical integration.
The integrals are required to have a high degree of (absolute)
accuracy-typically <10-1°-to avoid numerical linear dependency
problems. A charge distribution approach is implemented[20]. For
each term in the expansion the set of n2 charge distributions is cal-

culated and all possible vector dot products (length 0(500)) are
formed. Given sufficient memory to hold all of the charge distribu-
tion quantities the CPU time is dominated by the dot products.

The code scans the list of integrals, allocating memory and initial-
izing each charge distribution (CD) it encounters. When memory
is exhausted, it computes the scanned integrals. This process is
repeated until all of the integrals have been computed. The algo-
rithm performance improves with increasedmemory since consider-
ably fewer CD quantities are calculated (seeTable 5). The code
again demonstrates the importance of scalar sections. In scalar
mode about 95% of the CPU time is spent performing dot products
compared to only 35% in vector mode.

There are many organizations possible for implementing this algo-

rithm on multiprocessors. Since any number of the O(n 4) integrals

may be computed independently, the simplest approach is to parti-

tion the integral list and have each processor work on separate par-

titions. If we define the speedup in performance for n processors to

be the ratio of the performance of n processors to that of one pro-

cessor, then the speedup for this implementation is n since each of

the partitions is independent. The implementation could be rather

inefficient, however, since most of the CD quantities will need to be

recomputed many times. On some architectures this might be the

optimal implementation anyway. This might occur, for example, if



there were O(n4) processors or if the interconnection network were

sufficiently slow (the definition of sufficiently slow would depend on

the amount of memory available per processor). On neither the

Cray XMP nor the MIT static data flow architecture is this algo-

rithm optimal. On the Cray XMP the CPU's share memory so

that twice the memory is available. Thus, we can store twice the

number of CD quantities and compute many more integrals before

needing to reinitialize. In effect, we will be computing considerably

fewer CD quantities so that our efficiency would be greater thai1 2.

On the static data flow architecture, we can divide the O(n 2) CD

quantities among the PE's (m per PE) and partition the integral

file into subblocks. Each processor would need at most 2m CD

quantities, and each would compute O(m 2) integrals. Also, each PE

would need to only import the CD quantity itself and not the asso-

ciated tables needed to form the CD quantity. The algorithm is

thus expected to perform very well, close to the 1.2GFLOPS limit,

without requiring considerable redundant calculations.

In conclusion, computational chemistry codes can perform well on

both the Cyber 205 and the Cray XMP. Algorithm development

and coding considerations are more involved for the Cyber 205 but

impressive computational chemistry packages have been developed

for both the Cyber 205 [21] and the Cray XMP[22]. In addition,

there is a considerable degree of parallelism in the algorithms that

can be easily exploited. Considerable algorithmic development will

be required for some steps (notably the multiconfiguration self con-

sistent (MCSCF) and configuration interaction (CI) steps) to

reduce the network traffic, particularly on non-shared memory

architectures. The improved performance which will be obtained

from multiprocessors will significantly extend the systems that can

be studied.

The authors would like to acknowledge helpful discussions with G.

B. Adams and M. L. Patrick and to thank J. Dennis, W. Acker-

man, and G. Guang-Rong for the help during the data flow

workshop.



Bibliography

1. H. F. Schaefer, "The Electronic Structure of Atoms and

Molecules", Addison-Wesley, Reading,Mass. (1972).

2. B.H. Lengsfield, A. D. McLean, M. Yoshimine, and B. Liu,

79, 1891 (1983).
3. C.W. Bauschlicher, B. H. Lengsfield and B. Liu, J. Chem

Phy., 77, 4084 (1982); S. R. Langhoff, C. W. Bauschlicher,

and H. Partridge, "Theoretical Dissociation Energies for Ionic

Molecules", in "Comparison of ab initio Quantum Chemistry

with Experiment", ed. R. Bartlett, D. Reidel, Boston, Mass

(1985).

4. M. Larsson and P. E. M. Siegbahn, J. Chem. Phys., 79, 2270

(1983).

5. M. Seel and P. S. Bagus, Phys. Rev. B., 28, 2023 (1983).

6. J.B. Dennis, "Data Flow Ideas for Supercomputers," Proceed-

ings of the IEEE COMPCON, p15, February 1984.

7. Fortran (CFT) Reference Manual SR-0009, Cray Research

Inc, Mendota Heights, Minn, 1984.

8. Fortran 200, Version 1, Control Data Corp., Mineapolis,

Minn, 1984.

9. D.B. Gannon and J. Van Rosendale, IEEE Tran. Comp., 33,

1180 (1984).

10. A. L. Davis, R. M. Keller, VVData Flow Program Graphs, w

Computer. 15, 26 (1982).

11. The data flow workshop was conducted by RIACS in Sep-

tember 1984 to assess the effectiveness of data flow program-

ming using a specific data flow machine for computational

problems of interest to NASA and DARPA. The workshop

was conducted by three researchers from MIT: J. Dennis, W.

Ackerman, and G. Guang-Rong.

12. G. B. Adams III, R. L. Brown, R. J. Denning, "Report on an

Evaluation Study of Data Flow Computation", in preparation.



13. W. B. Ackerman, J. B. Dennis, "VAL--A Value-oriented Algo-
rithmic Language: Preliminary Reference Manual,"
MIT/LCS/TR-218, Massachusetts Institute for Technology,
Cambridge, MA (Jun 1979); W. B. Ackerman, Computer, 15,
15 (19s2).

14. R. C. Raffenetti, Chem. Phys. Lett., 20, 335 (1973).

15. E. R. Davidson, J. Comp. Phys., 17, 87 (1975); B. Liu, NRCC

report on the workshop "Numerical Algorithms in Chemistry:

Algebraic Methods", Lawrence Berkeley Laboratory, Berkeley,

Ca, p49, 1978.

16. For example in FORTRAN the gather is

DO 10 I=I,N

I0 A(1) =B(INDX(1))

17. D. A. Reed and M. L. Patrick, "Iterative Solution of Large,

Sparse, Linear Systems on a Static Data Flow Architecture:

Performance Studies", in preparation; D. A. Reed and M. L.

Patrick, "Parallel, Iterative Solutions of Sparse Linear Sys-

tems: Models and Architectures," Parallel Computing, to

appear.

18. M. Yoshimine, IBM Report R. J. 555, 1969, San Jose, Ca.

19. K. Rudenberg, J. Chem. Phys., 19, 1459 (1951).

20. S. Hagstrom, QCPE 10, 252 (1975); S. Hagstrom and H. Par-

tridge (unpublished).

21. R. Ahlrics, H. J. Bohm, C. Ehrhardt, P. Scharf, H. Schiffer,

H.Lischka, and M. Schindler, J. Comp. Chem. in press.

22. V. R. Saunders and J. H. van Lenthe, Mol. Phys., 48, 923

(1983).



Figure 1: Static Data Flow Machine Architecture a

L

RN

RN Routing Network. 512 by 512, 16 bit data paths,

operates at > 5MHz, average rate of transmitting FP

packets 0.25 MHz from a single PE to another.

PE Processing Elements. 5 to 8 MFLOPS with two 1.25 to

2 MFLOP multipliers. 256 PE's in the system.

IS Instruction Store. 1024 cells for FP instructions, 1024
for others.

AM Array Memory. Size not fully determined. At least

256K 64 bit words per PE.

I0 Input Output. Includes mass memory, host processor,

and display systems. 256 paths through the RN are
reserved for I0.

aThis is figure 2 for [12]



Figure 2: FORTRAN code for sparse matrix vector

product

C

C

C

C

Row IO VERSION of D=HC.

NROW IS THE NUMBER OF VECTORS

N IS MATRIX DIMENSION

IU IS DISK UNIT

A: Scalar Code

DO 1 I=I,N

READ (IU)N Z, (BUF (J),J= 1,NZ)

DO 2 K=I,NROW

DO 3 JX=I,NZ

J=AND (BUF(JX),MASK16)

H C (J,K)=H C(J,K)+C (I,K)* BUF (JX)

HC(I,K) =HC(I,K) +C(J,K)*BUF(JX)

CONTINUE

CONTINUE

CONTINUE

B: Cray XMP Code

DO 1 I=I,N

READ (IV) NZ,(BUF(J),J=I,NZ)

DO 3 J=I,NZ

ISC(J)=AND(BUF(J),MASK16)

3 CONTINUE

DO 2 K=I,NROW

HC(I,K) =HC (I,K)+SPDOT(NZ,C(1,K),ISC,BUF)

CALL SPAXPY(NZ,C (I,K),BUF,HC (1,K),ISC)

2 CONTINUE

1 CONTINUE



C: Cray XMP multiprocessor code.

SUBROUTINE DI (C,HC,NROW,N,OUT,OUT2,HC2)
COMMON /UNITS/IHU

DIMENSION OUT(10240),OUT2 (I0240),ISC (20000),ISC2 (20000)

DIMENSION C(N,NROW),HC(N,NROW),HC2 (N,NROW)

DIMENSION IDTASK(3)

EXTERNAL HCM

IDTASK(1)=3

IDTASK(3)=7777

REWIND IHU

i01 CONTINUE

READ (IHU,END=88 ,ERR =88) OUT

CALL TSKSTART(IDTASK,HCM,C,HC,NROW,N,OUT,ISC)

READ (IHU,END=88 ,ERR =88) OUT2

CALL HCM(C,HC2,NROW,N,OUT2,ISC2)

CALL TSKWAIT(IDTASK)

GO TO i01

88 CONTINUE

CALL TSKWAIT(IDTASK)

RETURN

END

SUBROUTINE HCM(C,HC,NROW,N,OUT,ISC)

DIMENSION C(N,NROW),HC(N,NROW),OUT(1),ISC(1)

NN=AND(OUT(1),.NOT.MASK(30))

MMM=.NOT.MASK(48)

IU=I

IXX=0

1 CONTINUE

IU=IU+I

IXX--IXX+I

IF (IXX. G T.NN) RETURN

NUM=O UT (IU).AND..N OT.MASK (34)

I---SHIFTR(OUT(IV),30)

DO 2 JX=I,NUM

ISC(JX)=AND(OUT(JX+IU),MMM)



2 CONTINUE

DO 4 K--1,NROW
HC(I,K)=HC(I,K) +SPDOT(NUM,C(1,K),ISC,OUT(IU+I))

CALL SPAXPY(NUM,C(I,K),OUT(IU+I) ,HC (1,K),ISC)

4 CONTINUE

IU=IU+NUM

IF(I.LT.N)GO TO 1

RETURN

END



Figure 3: VAL code for sparse matrix vector product

function hcxsp(

% function to multiply d=hc where h is a randomly sparce matrix and

% c and d are (a set of) vectors. Assumption are that both

% c and d fit in "memory" (are randomly accessible), h is

% a real symmetric matrix of dimension n with only the nonzero

% elements stored (only the lower traingular elements of h are

% stored). The number of nonzero elements of h can be large.

%

%

%
n,ncols:integer; % dimension of matrix, number of

vectors c (and d)

c:array[array[real]] ;

argh:array[array[real]]; % non zero elements of h

argindex:array[array[integer]] % for a given row the column index

returns

array[array[real]] % return d

)
for &=array__fill(1,ncols,array_ fill(1,n,0.) );

i:=l;

%

do if i >n then d

else

let

h:=argh[i];

index:=argindex[i];

nok:=array__size(h);

in iter d:=

forall kcol in [1,ncols]

construct

for k:--l;

col:=d[kcol]

do

if k>nok then col



elselet

x:=col[i:col[i]+h[k]*c[index[k],kcol]];
y:=if k=nok then x

elsex[index[k]:col[index[k]]+h[k]*c[i,kcol]]
endif;

in

iter col:=y;
k:=k+l enditer

endlet
endif

endfor
endall;
i:=i+l

enditer
endlet

endif
endfor

endfun



Table 1. Summary of CPU times (in seconds)

for the Sparse Matrix Vector Product a.

Cray XMP Cyber 205

NROW 1 3 5 10 1 3 5 10

Sb 1.59 4.70 7.83 15.63 2.42 7.23 12.04 24.04

VL c 0.74 2.00 3.28 6.48 0.44 1.22 1.99 3.94

VS d 4.00 4.10 4.19 4.34 9.42 9.45 9.53 9.63

Row IO e 1.89 3.17 4.45 7.56 18.52 20.53 22.76 29.53

aThe test case is for a matrix of order 20000 and 1% sparse.

bScalar timings.

CVectorization along row. The Cray code is given in Figure 2b.

dvectorization over number of vectors, NROW.

eEach column of H is read as a separate binary read:

Read(file)N,(BUF(I),I=l,N) where N is the number of nonzero

elements in this row.



Table 2. Four Index Transformation timings for the Cray (CPU seconds)

CDC 7600

Expand --

MXM1 --

Sort 50

MXM2

Total 700

C2v Symmetry

AO's 48 26 26 11

MO's 45 24 24 11

FORTRAN MXM MXM a Operations b

-- 1 1 n 2

-- 32 24 n 3

37 37 14 n 2

-- 6 6 n 3

126 76 45

Symmetry Block (A2AI{ B2B1)

AO's 58 30 30 13

MO's 58 30 30 13

Scalar FORTRAN c MXM a

Expand 0.32 0.01 0.01

MXM1 19.81 1.93 0.54

Sort 2.35 1.28 1.28

MXM2 20.40 4.50 0.48

Total 42.13 7.88 2.50

aFor this case the scalar code has been improved and C T stored to

minimize memory bank conflicts.

COperations for each simularity transform, yields an overall n S

algorithm.

Cwith default vectorization.



Table 3. Matrix multiplication timings (in sec)

for the Cray XMP and Cyber 205 a

Cray XMP Cyber 205

n MXM FORTRAN FORTRAN Scalar

4 0.0000056 0.0000354 0.000069 0.000062

8 0.0000145 0.000121 0.000253 0.00037

16 0.0000603 0.000484 0.000693 0.00269

32 0.000378 0.00204 0.00282 0.0206

64 0.00273 0.01002 0.0120 0.161

128 0.0216 0.0558 0.0539 1.274

256 0.171 0.359 0.257 10.389

aThese timings are the average of 10 executions in batch mode.



Table 4. Cyber 205 timings (in seconds) to perform the
half-transform of the four index transformation

NMa MXM1 b MXM2 b MXM c

1 10.10 4.49 116.2
5 2.26 1.11 84.3

10 1.28 0.69 23.1
20 0.79 0.48 17.9
50 0.50 0.35 14.8

100 0.40 0.307 13.8
400 13.3
754 0.271
900 0.31

Cray 0.54 0.48

aNM is the number of similarity transforms performed simultane-
ously.

bTimings for the symmetry block (A2A1I B2B1)of table 2.

CTimings for square casewith the number of AO's=64.




